inequality
- quantecon.inequality.gini_coefficient(y)[source]
Implements the Gini inequality index
- Parameters:
- yarray_like(float)
Array of income/wealth for each individual. Ordered or unordered is fine
- Returns:
- Gini index: float
The gini index describing the inequality of the array of income/wealth
References
- quantecon.inequality.lorenz_curve(y)[source]
Calculates the Lorenz Curve, a graphical representation of the distribution of income or wealth.
It returns the cumulative share of people (x-axis) and the cumulative share of income earned.
- Parameters:
- yarray_like(float or int, ndim=1)
Array of income/wealth for each individual. Unordered or ordered is fine.
- Returns:
- cum_peoplearray_like(float, ndim=1)
Cumulative share of people for each person index (i/n)
- cum_incomearray_like(float, ndim=1)
Cumulative share of income for each person index
References
Examples
>>> a_val, n = 3, 10_000 >>> y = np.random.pareto(a_val, size=n) >>> f_vals, l_vals = lorenz(y)
- quantecon.inequality.rank_size(data, c=1.0)[source]
Generate rank-size data corresponding to distribution data.
- Parameters:
- dataarray_like
the set of observations
- cint or float
restrict plot to top (c x 100)% of the distribution
- Returns:
- rank_dataarray_like(float, ndim=1)
Location in the population when sorted from smallest to largest
- size_dataarray_like(float, ndim=1)
Size data for top (c x 100)% of the observations
Examples
>>> y = np.exp(np.random.randn(1000)) # simulate data >>> rank_data, size_data = rank_size(y, c=0.85)
- quantecon.inequality.shorrocks_index(A)[source]
Implements Shorrocks mobility index
- Parameters:
- Aarray_like(float)
Square matrix with transition probabilities (mobility matrix) of dimension m
- Returns:
- Shorrocks index: float
The Shorrocks mobility index calculated as
\[s(A) = \frac{m - \sum_j a_{jj} }{m - 1} \in (0, 1)\]An index equal to 0 indicates complete immobility.
References
[1]Wealth distribution and social mobility in the US: A quantitative approach (Benhabib, Bisin, Luo, 2017). https://www.aeaweb.org/articles?id=10.1257/aer.20151684