kalman
- class quantecon.kalman.Kalman(ss, x_hat=None, Sigma=None)[source]
Bases:
object
Implements the Kalman filter for the Gaussian state space model
\[\begin{split}x_{t+1} = A x_t + C w_{t+1} \\ y_t = G x_t + H v_t\end{split}\]Here \(x_t\) is the hidden state and \(y_t\) is the measurement. The shocks \(w_t\) and \(v_t\) are iid standard normals. Below we use the notation
\[Q := CC' R := HH'\]- Parameters:
- ssinstance of LinearStateSpace
An instance of the quantecon.lss.LinearStateSpace class
- x_hatscalar(float) or array_like(float), optional(default=None)
An n x 1 array representing the mean x_hat of the prior/predictive density. Set to zero if not supplied.
- Sigmascalar(float) or array_like(float), optional(default=None)
An n x n array representing the covariance matrix Sigma of the prior/predictive density. Must be positive definite. Set to the identity if not supplied.
- Attributes:
- Sigma, x_hatas above
- Sigma_infinityarray_like or scalar(float)
The infinite limit of Sigma_t
- K_infinityarray_like or scalar(float)
The stationary Kalman gain.
Methods
Updates the moments of the time t filtering distribution to the moments of the predictive distribution, which becomes the time t+1 prior
Updates the moments (x_hat, Sigma) of the time t prior to the time t filtering distribution, using current measurement \(y_t\).
stationary_coefficients
(j[, coeff_type])Wold representation moving average or VAR coefficients for the steady state Kalman filter.
stationary_values
([method])Computes the limit of \(\Sigma_t\) as t goes to infinity by solving the associated Riccati equation.
update
(y)Updates x_hat and Sigma given k x 1 ndarray y.
This function takes the linear state space system that is an input to the Kalman class and it converts that system to the time-invariant whitener represenation given by
set_state
stationary_innovation_covar
References
https://python.quantecon.org/kalman.html
- property K_infinity
- property Sigma_infinity
- filtered_to_forecast()[source]
Updates the moments of the time t filtering distribution to the moments of the predictive distribution, which becomes the time t+1 prior
- prior_to_filtered(y)[source]
Updates the moments (x_hat, Sigma) of the time t prior to the time t filtering distribution, using current measurement \(y_t\).
The updates are according to
\[\hat{x}^F = \hat{x} + \Sigma G' (G \Sigma G' + R)^{-1} (y - G \hat{x}) \Sigma^F = \Sigma - \Sigma G' (G \Sigma G' + R)^{-1} G \Sigma\]- Parameters:
- yscalar or array_like(float)
The current measurement
- stationary_coefficients(j, coeff_type='ma')[source]
Wold representation moving average or VAR coefficients for the steady state Kalman filter.
- Parameters:
- jint
The lag length
- coeff_typestring, either ‘ma’ or ‘var’ (default=’ma’)
The type of coefficent sequence to compute. Either ‘ma’ for moving average or ‘var’ for VAR.
- stationary_values(method='doubling')[source]
Computes the limit of \(\Sigma_t\) as t goes to infinity by solving the associated Riccati equation. The outputs are stored in the attributes K_infinity and Sigma_infinity. Computation is via the doubling algorithm (default) or a QZ decomposition method (see the documentation in matrix_eqn.solve_discrete_riccati).
- Parameters:
- methodstr, optional(default=”doubling”)
Solution method used in solving the associated Riccati equation, str in {‘doubling’, ‘qz’}.
- Returns:
- Sigma_infinityarray_like or scalar(float)
The infinite limit of \(\Sigma_t\)
- K_infinityarray_like or scalar(float)
The stationary Kalman gain.
- update(y)[source]
Updates x_hat and Sigma given k x 1 ndarray y. The full update, from one period to the next
- Parameters:
- ynp.ndarray
A k x 1 ndarray y representing the current measurement
- whitener_lss()[source]
This function takes the linear state space system that is an input to the Kalman class and it converts that system to the time-invariant whitener represenation given by
\[\tilde{x}_{t+1}^* = \tilde{A} \tilde{x} + \tilde{C} v a = \tilde{G} \tilde{x}\]where
\[\tilde{x}_t = [x+{t}, \hat{x}_{t}, v_{t}]\]and
\[\begin{split}\tilde{A} = \begin{bmatrix} A & 0 & 0 \\ KG & A-KG & KH \\ 0 & 0 & 0 \\ \end{bmatrix}\end{split}\]\[\begin{split}\tilde{C} = \begin{bmatrix} C & 0 \\ 0 & 0 \\ 0 & I \\ \end{bmatrix}\end{split}\]\[\begin{split}\tilde{G} = \begin{bmatrix} G & -G & H \\ \end{bmatrix}\end{split}\]with \(A, C, G, H\) coming from the linear state space system that defines the Kalman instance
- Returns:
- whitened_lssLinearStateSpace
This is the linear state space system that represents the whitened system