# approximation¶

## tauchen¶

Discretizes Gaussian linear AR(1) processes via Tauchen’s method

quantecon.markov.approximation.rouwenhorst(n, ybar, sigma, rho)[source]

Takes as inputs n, p, q, psi. It will then construct a markov chain that estimates an AR(1) process of: $$y_t = \bar{y} + \rho y_{t-1} + \varepsilon_t$$ where $$\varepsilon_t$$ is i.i.d. normal of mean 0, std dev of sigma

The Rouwenhorst approximation uses the following recursive defintion for approximating a distribution:

$\begin{split}\theta_2 = \begin{bmatrix} p & 1 - p \\ 1 - q & q \\ \end{bmatrix}\end{split}$
$\begin{split}\theta_{n+1} = p \begin{bmatrix} \theta_n & 0 \\ 0 & 0 \\ \end{bmatrix} + (1 - p) \begin{bmatrix} 0 & \theta_n \\ 0 & 0 \\ \end{bmatrix} + q \begin{bmatrix} 0 & 0 \\ \theta_n & 0 \\ \end{bmatrix} + (1 - q) \begin{bmatrix} 0 & 0 \\ 0 & \theta_n \\ \end{bmatrix}\end{split}$
Parameters: n : int The number of points to approximate the distribution ybar : float The value $$\bar{y}$$ in the process. Note that the mean of this AR(1) process, $$y$$, is simply $$\bar{y}/(1 - \rho)$$ sigma : float The value of the standard deviation of the $$\varepsilon$$ process rho : float By default this will be 0, but if you are approximating an AR(1) process then this is the autocorrelation across periods mc : MarkovChain An instance of the MarkovChain class that stores the transition matrix and state values returned by the discretization method
quantecon.markov.approximation.std_norm_cdf[source]
quantecon.markov.approximation.tauchen(rho, sigma_u, b=0.0, m=3, n=7)[source]

Computes a Markov chain associated with a discretized version of the linear Gaussian AR(1) process

$y_{t+1} = b + \rho y_t + u_{t+1}$

using Tauchen’s method. Here $${u_t}$$ is an i.i.d. Gaussian process with zero mean.

Parameters: b : scalar(float) The constant term of {y_t} rho : scalar(float) The autocorrelation coefficient sigma_u : scalar(float) The standard deviation of the random process m : scalar(int), optional(default=3) The number of standard deviations to approximate out to n : scalar(int), optional(default=7) The number of states to use in the approximation mc : MarkovChain An instance of the MarkovChain class that stores the transition matrix and state values returned by the discretization method