import numpy as np
from scipy.linalg import solve
[docs]def nnash(A, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2,
beta=1.0, tol=1e-8, max_iter=1000):
r"""
Compute the limit of a Nash linear quadratic dynamic game. In this
problem, player i minimizes
.. math::
\sum_{t=0}^{\infty}
\left\{
x_t' r_i x_t + 2 x_t' w_i
u_{it} +u_{it}' q_i u_{it} + u_{jt}' s_i u_{jt} + 2 u_{jt}'
m_i u_{it}
\right\}
subject to the law of motion
.. math::
x_{t+1} = A x_t + b_1 u_{1t} + b_2 u_{2t}
and a perceived control law :math:`u_j(t) = - f_j x_t` for the other
player.
The solution computed in this routine is the :math:`f_i` and
:math:`p_i` of the associated double optimal linear regulator
problem.
Parameters
----------
A : scalar(float) or array_like(float)
Corresponds to the above equation, should be of size (n, n)
B1 : scalar(float) or array_like(float)
As above, size (n, k_1)
B2 : scalar(float) or array_like(float)
As above, size (n, k_2)
R1 : scalar(float) or array_like(float)
As above, size (n, n)
R2 : scalar(float) or array_like(float)
As above, size (n, n)
Q1 : scalar(float) or array_like(float)
As above, size (k_1, k_1)
Q2 : scalar(float) or array_like(float)
As above, size (k_2, k_2)
S1 : scalar(float) or array_like(float)
As above, size (k_1, k_1)
S2 : scalar(float) or array_like(float)
As above, size (k_2, k_2)
W1 : scalar(float) or array_like(float)
As above, size (n, k_1)
W2 : scalar(float) or array_like(float)
As above, size (n, k_2)
M1 : scalar(float) or array_like(float)
As above, size (k_2, k_1)
M2 : scalar(float) or array_like(float)
As above, size (k_1, k_2)
beta : scalar(float), optional(default=1.0)
Discount rate
tol : scalar(float), optional(default=1e-8)
This is the tolerance level for convergence
max_iter : scalar(int), optional(default=1000)
This is the maximum number of iteratiosn allowed
Returns
-------
F1 : array_like, dtype=float, shape=(k_1, n)
Feedback law for agent 1
F2 : array_like, dtype=float, shape=(k_2, n)
Feedback law for agent 2
P1 : array_like, dtype=float, shape=(n, n)
The steady-state solution to the associated discrete matrix
Riccati equation for agent 1
P2 : array_like, dtype=float, shape=(n, n)
The steady-state solution to the associated discrete matrix
Riccati equation for agent 2
"""
# == Unload parameters and make sure everything is an array == #
params = A, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2
params = map(np.asarray, params)
A, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2 = params
# == Multiply A, B1, B2 by sqrt(beta) to enforce discounting == #
A, B1, B2 = [np.sqrt(beta) * x for x in (A, B1, B2)]
n = A.shape[0]
if B1.ndim == 1:
k_1 = 1
B1 = np.reshape(B1, (n, 1))
else:
k_1 = B1.shape[1]
if B2.ndim == 1:
k_2 = 1
B2 = np.reshape(B2, (n, 1))
else:
k_2 = B2.shape[1]
v1 = np.eye(k_1)
v2 = np.eye(k_2)
P1 = np.zeros((n, n))
P2 = np.zeros((n, n))
F1 = np.full((k_1, n), np.inf)
F2 = np.full((k_2, n), np.inf)
for it in range(max_iter):
# update
F10 = F1
F20 = F2
G2 = solve(np.dot(B2.T, P2.dot(B2))+Q2, v2)
G1 = solve(np.dot(B1.T, P1.dot(B1))+Q1, v1)
H2 = np.dot(G2, B2.T.dot(P2))
H1 = np.dot(G1, B1.T.dot(P1))
# break up the computation of F1, F2
F1_left = v1 - np.dot(H1.dot(B2)+G1.dot(M1.T),
H2.dot(B1)+G2.dot(M2.T))
F1_right = H1.dot(A)+G1.dot(W1.T) - np.dot(H1.dot(B2)+G1.dot(M1.T),
H2.dot(A)+G2.dot(W2.T))
F1 = solve(F1_left, F1_right)
F2 = H2.dot(A)+G2.dot(W2.T) - np.dot(H2.dot(B1)+G2.dot(M2.T), F1)
Lambda1 = A - B2.dot(F2)
Lambda2 = A - B1.dot(F1)
Pi1 = R1 + np.dot(F2.T, S1.dot(F2))
Pi2 = R2 + np.dot(F1.T, S2.dot(F1))
P1 = np.dot(Lambda1.T, P1.dot(Lambda1)) + Pi1 - \
np.dot(np.dot(Lambda1.T, P1.dot(B1)) + W1 - F2.T.dot(M1), F1)
P2 = np.dot(Lambda2.T, P2.dot(Lambda2)) + Pi2 - \
np.dot(np.dot(Lambda2.T, P2.dot(B2)) + W2 - F1.T.dot(M2), F2)
dd = np.max(np.abs(F10 - F1)) + np.max(np.abs(F20 - F2))
if dd < tol: # success!
break
else:
msg = 'No convergence: Iteration limit of {0} reached in nnash'
raise ValueError(msg.format(max_iter))
return F1, F2, P1, P2