compute_fp

Filename: compute_fp.py Authors: Thomas Sargent, John Stachurski

Compute the fixed point of a given operator T, starting from specified initial condition v.

quantecon.compute_fp.compute_fixed_point(T, v, error_tol=0.001, max_iter=50, verbose=1, print_skip=5, *args, **kwargs)[source]

Computes and returns \(T^k v\), an approximate fixed point.

Here T is an operator, v is an initial condition and k is the number of iterates. Provided that T is a contraction mapping or similar, \(T^k v\) will be an approximation to the fixed point.

Parameters:

T : callable

A callable object (e.g., function) that acts on v

v : object

An object such that T(v) is defined

error_tol : scalar(float), optional(default=1e-3)

Error tolerance

max_iter : scalar(int), optional(default=50)

Maximum number of iterations

verbose : bool, optional(default=True)

If True then print current error at each iterate.

args, kwargs :

Other arguments and keyword arguments that are passed directly to the function T each time it is called

Returns:

v : object

The approximate fixed point